Modelling reasoning processes as a function of autistic-like traits¹

Andy Fugard^a Mary Stewart^b Keith Stenning^c

^aDepartment of Psychology University of Salzburg

^bApplied Psychology Heriot-Watt University

^cHuman Communication Research Centre University of Edinburgh

17th Annual Meeting of the European Society for Philosophy and Psychology Budapest, 27–30 August 2009

¹Funded by EPSRC and MRC

- Post continuum-of-accuracy individual differences
- Peering outside logic: autistic-like traits
- ③ Related to reasoning?
- Cross-task homogeneity of interpretation

Illustrative example 1

Some elephants are mammals. true/false/can't tell

Illustrative example 1

Some elephants are mammals. true/false/can't tell

Answers

- Classical logic (and some people) say: true
- Many people say: false

Illustrative example 1

Some elephants are mammals. true/false/can't tell

Answers

- Classical logic (and some people) say: true
- Many people say: false

Why false?

- Assumptions of cooperativeness, informativeness, etc. (e.g., Mill, 1867; Grice, 1975)
- Also classical logic can still say false... depends how the sentence is interpreted

Illustrative example 2: the 'suppression' task (Byrne, 1989)

If she has an essay to finish then she will study late in the library. She has an essay to finish.

	Simple	Additional
MP	76	34
Guarded MP	3	35
Pass over in silence	3	6
Other	2	9
n	84	84

	Simple	Additional
MP	76	34
Guarded MP	3	35
Pass over in silence	3	6
Other	2	9
n	84	84

What's the correct model?!

Model 1: classical logic and modus ponens

Premises

- If she has an essay to finish then she will study late in the library.
- If the library stays open then she will study late in the library.
- **③** She has an essay to finish.

Model 1: classical logic and modus ponens

Premises

- If she has an essay to finish then she will study late in the library.
- If the library stays open then she will study late in the library.
- **③** She has an essay to finish.

Conclusion (of the unsuppressed)

She will study late in the library (1 and 3 by modus ponens)

Premises

- If she has an essay to finish (and no exception) then she will study late in the library.
- If the library stays open (and no exception) then she will study late in the library.
- She has an essay to finish
- Exceptions to 1: the library is closed,
- Security Exceptions to 2: no essay, ...

Premises

- If she has an essay to finish (and no exception) then she will study late in the library.
- If the library stays open (and no exception) then she will study late in the library.
- She has an essay to finish
- Exceptions to 1: the library is closed,
- Second Exceptions to 2: no essay, ...

Conclusion (of the suppressed)

- Library is closed, by CWR
- If the library is open, then she will study late in the library

Reasoning to and from interpretations (Stenning & van Lambalgen, 2008)

The old

- To use a logic you must first formalize the task
- 'If A, then $B' \not\equiv A \Rightarrow B$ or even B|A for every A, B.
- 'A and B' $\neq A \land B$ for every A, B.

Reasoning to and from interpretations (Stenning & van Lambalgen, 2008)

The old

- To use a logic you must first formalize the task
- 'If A, then $B' \not\equiv A \Rightarrow B$ or even B|A for every A, B.
- 'A and $B' \not\equiv A \land B$ for every A, B.

The new

- Use logics (plural) to model interpretation in people
- Interpretation: choose logic, set parameters
- Derivation: inference once parameters set
- Correctness with respect to interpretation
- A logical way to model an old problem (e.g., Henle, 1962; Smedslund, 1970)

Broad organizing framework: interpretative stances (Stenning & van Lambalgen, 2008)

Credulous

- Infer speaker's intended interpretation
- A single interpretation, if possible
- Accept the authority of the speaker
- Often depends on assumed mutual knowledge
- Relates to language pragmatics (Grice and co.)

Sceptical

- May be many interpretations
- Doubt the authority of the speaker
- Depend on as few assumptions as possible

Autism spectrum conditions

- Heterogenous set of clinical conditions
- Impairment, e.g., in pragmatic language
- Peaks of ability, e.g., in perceptual tasks
- Milder variants in typically developing individuals
- Hypothesized to relate to traits predicting success at humanities vs. scientific study
- Related to reasoning?

Self-reported autistic-like traits

Autism-Spectrum Quotient (Baron-Cohen et al., 2001)

- Designed for screening for ASC
- Continuously distributed in TDs
- Covaries with cognitive function related to ASC in TDs, e.g.,
 - 'Reading the mind in the eyes'
 - Joint attention (Bayliss et al., 2005)
 - Block-design (Stewart et al., 2009)

Self-reported autistic-like traits

Autism-Spectrum Quotient (Baron-Cohen et al., 2001)

- Designed for screening for ASC
- Continuously distributed in TDs
- Covaries with cognitive function related to ASC in TDs, e.g.,
 - 'Reading the mind in the eyes'
 - Joint attention (Bayliss et al., 2005)
 - Block-design (Stewart et al., 2009)

Broad Autism Phenotype Questionnaire (Hurley et al., 2007)

• Designed to detect the 'broader phenotype' in ASC relatives

Self-reported autistic-like traits

Autism-Spectrum Quotient (Baron-Cohen et al., 2001)

- Designed for screening for ASC
- Continuously distributed in TDs
- Covaries with cognitive function related to ASC in TDs, e.g.,
 - 'Reading the mind in the eyes'
 - Joint attention (Bayliss et al., 2005)
 - Block-design (Stewart et al., 2009)

Broad Autism Phenotype Questionnaire (Hurley et al., 2007)

• Designed to detect the 'broader phenotype' in ASC relatives

Both

- Personal-level trait descriptions
- Associated with (caused by?), e.g., cognitive mechanisms

Broad Autism Phenotype Questionnaire

Questionnaires and tasks

- AQ and BAPQ: reconnect reasoning to life outside the lab
- Six reasoning tasks (2 hours over 2 sessions): tasks related to credulous vs. sceptical interpretation

Questionnaires and tasks

- AQ and BAPQ: reconnect reasoning to life outside the lab
- Six reasoning tasks (2 hours over 2 sessions): tasks related to credulous vs. sceptical interpretation

People

- University students
- No students of formal logic related subjects

Questionnaires and tasks

- AQ and BAPQ: reconnect reasoning to life outside the lab
- Six reasoning tasks (2 hours over 2 sessions): tasks related to credulous vs. sceptical interpretation

People

- University students
- No students of formal logic related subjects

Do autistic-like traits predict interpretation?

 $R^2 = 0.16, p < 0.001$

See also van Lambalgen and Smid (2004); Pijnacker et al. (2009)

Example

Assume Some A are B is true Then Some A are not B is... True / False / Could be True or False

Example

Assume Some A are B is true Then Some A are not B is... True / False / Could be True or False

Classical-logically independent problems

Some A are B	\Rightarrow	All A are B	:	rash = false
Some A are not B	\Rightarrow	No A are B	:	rash = false
Some A are not B	\Rightarrow	Some A are B	:	rash = true
Some A are B	\Rightarrow	Some A are not B	:	rash = true

- Classical answer always 'can't tell' for these items
- A 'rash' response indicates credulous interpretation

Rashness and autistic-like traits

Proportional odds logistic regression model

Rashness and autistic-like traits

Proportional odds logistic regression model

People who report being good at pragmatic language give a more credulous response

(Two-premise monadic predicate logic)

Example

Assume All B are A Some B are C What follows?

Into the swamp: categorical syllogisms

(Two-premise monadic predicate logic)

Example Assume All B are A Some B are C What follows?

- Favorite test case in psychology
- 64 items
- Individual differences galore

Into the swamp: categorical syllogisms

(Two-premise monadic predicate logic)

Source-founding process model (e.g., Stenning & Cox, 2006)

- Related to Aristotle's proof by ecthesis
- More general than mental rules vs. models vs. Euler circles
- Traces in the Probability Heuristics Model (Oaksford & Chater, 2007)
- Response term-order leaks information about this process

Basic idea

- Try to construct an individual description
- $\exists x. A(x) \land B(x) \land C(x)$
- Read off the conclusion

Find premise to source from

Build individual description: $B(i) \wedge C(i)$

Feed middle-term through universal: $B(i) \land C(i) \land A(i)$

Remove middle term: $C(i) \wedge A(i)$

Conclude: some C are A

Factors influencing term-order

1. All A are B

2. Some B are C

Premise order

More ACs on average

Premise term-order

Same subjects and predicate order in conclusion (e.g., here *CA*)

Quantifiers

People tend to source from existentials (e.g., here *CA* again)

(all p < 0.001)

(all p < 0.05)

How homogenous is interpretation cross-task?

Credulous reasoning crosses quantifier task boundaries

Rash on (in-place) immediate inference (e.g., Some A are $B \Rightarrow AII A$ are B)

Credulous reasoning crosses quantifier task boundaries

Rash on (in-place) immediate inference (e.g., Some A are $B \Rightarrow AII A$ are B)

 $\begin{array}{l} \longleftrightarrow \\ \text{Rash on double existential syllogistics} \\ (e.g., \ \text{Some A are B, Some B are C} \Rightarrow \ \text{Some A are C}) \end{array}$

... and outside quantifiers

Closed-world reasoning on the suppression task (libraries and co)

 \longleftrightarrow Rash on double existential syllogistics

- Autistic traits predict interpretation in reasoning
- Credulous/sceptical interpretations are more general than the individual tasks
- People have different interpretations of discourse and tasks outside the lab, good to test this inside the lab too

- Autistic traits predict interpretation in reasoning
- Credulous/sceptical interpretations are more general than the individual tasks
- People have different interpretations of discourse and tasks outside the lab, good to test this inside the lab too

Thank you!

References I

Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high functioning autism, males and females, scientists and mathematicians. *Journal of Autism and Developmental Disorders*, 31, 5–17.

Bayliss, A. P., Pellegrino, G. di, & Tipper, S. P. (2005). Sex differences in eye gaze and symbolic cueing of attention. The Quarterly Journal of Experimental Psychology A, 58(4), 631–650.

Byrne, R. M. J. (1989). Suppressing valid inferences with conditionals. *Cognition*, *31*(1), 61–83.

Grice, H. P. (1975). Logic and conversation. In C. Peter & J. Morgan (Eds.), *Syntax and semantics 3: Speech acts.* Academic Press.

Henle, M. (1962). On the relation between logic and thinking. *Psychological Review*, *69*(4), 366–378.

References II

Hurley, R. S., Losh, M., Parlier, M., Reznick, J. S., & Piven, J. (2007). The broad autism phenotype questionnaire. *Journal* of Autism and Developmental Disorders, 37, 1679–1690.

Mill, J. S. (1867). An examination of Sir William Hamilton's philosophy: And of the principal philosophical questions discussed in his writings (3rd ed.). London: Longmans, Green, Reader, and Dyer.

Oaksford, M., & Chater, N. (2007). *Bayesian rationality: the probabilistic approach to human reasoning*. Oxford University Press.

Pijnacker, J., Geurts, B., van Lambalgen, M., Buitelaar, J., Kan, C., & Hagoort, P. (2009). Defeasible reasoning in high-functioning adults with autism: Evidence for impaired exception-handling. *Neuropsychologia*, 47(3), 644–651. Available from http://dx.doi.org/10.1016/ j.neuropsychologia.2008.11.011

References III

Smedslund, J. (1970). Circular relation between understanding and logic. Scandinavian Journal of Psychology, 11, 217–219.
Stenning, K., & Cox, R. (2006). Reconnecting interpretation to reasoning through individual differences. Quarterly Journal of Experimental Psychology, 59(8), 1454–1483.

Stenning, K., & van Lambalgen, M. (2008). Human reasoning and cognitive science. Cambridge, Massachusetts, USA: MIT Press.

- Stewart, M. E., Watson, J., Allcock, A.-J., & Yaqoob, T. (2009). Autistic traits predict performance on the block design. *Autism*, *13*(2), 133–142.
- van Lambalgen, M., & Smid, H. (2004). Reasoning patterns in autism: rules and exceptions. In L. Perez Miranda & J. Larrazabal (Eds.), *Proceedings eighth international colloquium on cognitive science*. Kluwer.