Distinguishing between = and <-

‘Perhaps because of the use of = for assignment in FORTRAN […] assignment is often read as “x equals E“. This causes great confusion. The first author learned to distinguish between = and := while giving a lecture in Marktoberdorf, Germany, in 1975. At one point, he wrote “:=” on the board but pronounced it “equals”. Immediately, the voice of Edsger W. Dijkstra boomed from the back of the room: “becomes!”. After a disconcerted pause, the first author said, “Thank you; if I make the same mistake again, please let me know.”, and went on. Once more during the lecture the mistake was made, followed by a booming “becomes” and a “Thank you”. The first author has never made that mistake again! The second author, having received his undergraduate education at Cornell, has never experienced this difficulty.’

– David Gries and Fred B. Schneider (1993, p. 17, footnote 6) [A logical approach to discrete math. Springer.]

R lets you use both = and <- for assignment, FYI.

Experiments to protect against harvest now, decrypt later

Quantum computing needs thousands of qubits to crack the public key encryption we currently rely on and at present the largest (publicly announced) quantum computer only has 433 qubits. The sales pitch for protecting against quantum attacks now is that baddies could be quietly harvesting encrypted data, so that when quantum computers are ready, off they go and decrypt.

There are two main approaches to protect against quantum attacks.

One approach, quantum encryption key distribution (QKD), can be implemented one qubit at a time, e.g., by sending photons along fibre optic cables. Each photon is a realisation of a qubit. HSBC is trialling a QKD approach developed by BT and Toshiba, which builds on BB84 from forty years ago. I’ve attempted to explain BB84 in a previous blog post.

Vodafone has opted for a non-quantum approach to defend against attacks on crypto by trialling new public key encryption algorithms, on classical computers, that are thought to be quantum-safe: post-quantum cryptography (PQC).

The next major revision of Google Chrome will include a hybrid approach combining X25519 , a standard method already used by Chrome and others browsers, with Kyber-768, a PQC method that has so far resisted attack.

Since PQC methods are new, the hybrid approach offers protection while the maths continues to be stress-tested. This is important since there has already been an embarrassingly quick crack of a supposedly quantum-safe approach.

A survey of impossibility results in computer science and neighbours (Brcic & Yampolskiy, in press)

Abstract:

An impossibility theorem demonstrates that a particular problem or set of problems cannot be solved as described in the claim. Such theorems put limits on what is possible to do concerning artificial intelligence, especially the super-intelligent one. As such, these results serve as guidelines, reminders, and warnings to AI safety, AI policy, and governance researchers. These might enable solutions to some long-standing questions in the form of formalizing theories in the framework of constraint satisfaction without committing to one option. We strongly believe this to be the most prudent approach to long-term AI safety initiatives. In this paper, we have categorized impossibility theorems applicable to AI into five mechanism-based categories: deduction, indistinguishability, induction, tradeoffs, and intractability. We found that certain theorems are too specific or have implicit assumptions that limit application. Also, we added new results (theorems) such as the unfairness of explainability, the first explainability-related result in the induction category. The remaining results deal with misalignment between the clones and put a limit to the self-awareness of agents. We concluded that deductive impossibilities deny 100%-guarantees for security. In the end, we give some ideas that hold potential in explainability, controllability, value alignment, ethics, and group decision-making.

References

Brcic, M., & Yampolskiy, R. V. (in press). Impossibility Results in AI: A Survey. ACM Computing Surveys.

Writing a song “is an act of self-murder”: Nick Cave on ChatGPT

The best part of Nick Cave’s critique of ChatGPT is, IMHO, the following:

“Songs arise out of suffering, by which I mean they are predicated upon the complex, internal human struggle of creation and, well, as far as I know, algorithms don’t feel.”

A close second:

“Writing a good song is not mimicry, or replication, or pastiche, it is the opposite. It is an act of self-murder that destroys all one has strived to produce in the past.”

Visualising qubits on the Bloch sphere

This post brings together visualisations and sums that I found really helpful for getting to grips with the Bloch sphere representation of qubit states.

Recap

The state of a qubit is represented by the linear combination

\(\displaystyle \alpha |0\rangle + \beta |1\rangle\)

for complex amplitudes \(\alpha, \beta \in \mathbb{C}\). The amplitudes satisfy \(|\alpha|^2 + |\beta|^2 = 1\), where

\(\displaystyle |x  + yi| = \sqrt{x^2 + y^2}\),

the modulus of a complex number.

The probability of measuring (using the classical basis) a 0 is \(|\alpha|^2\) and of measuring a 1 is \(|\beta|^2\), by the Born rule.

Distinct states can imply the same measurement probabilities:

Example 1. The amplitudes in the following state are defined without any imaginary component:

\(\displaystyle \sqrt{\frac{1}{2}} |0\rangle + \sqrt{\frac{1}{2}} |1\rangle\).

Apply the Born rule and the probability of both measurement outcomes is \(\frac{1}{2}\).â–ˇ

Example 2. The following example has an imaginary component in both amplitudes:

\(\displaystyle \frac{1}{2}(1 + i) |0\rangle + \frac{1}{2}(1 + i) |1\rangle\).

The modulus of both amplitudes is \(\sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2} = \sqrt{\frac{1}{2}}\). So the probability of obtaining either a 0 or a 1 is again \(\frac{1}{2}\).â–ˇ

Bloch sphere

The state of a qubit can be represented as a point on the surface of sphere, known as the Bloch sphere. To make sense of this representation, let’s look at a couple of animations, GIFed from the QuVis visualisation project at the University of St Andrews.

Firstly, consider the following circle sliding down and up the sphere (you could think of this as travelling along the sphere’s latitudes):

The first thing to note is that the north (top) and south (bottom) pole of the sphere are where the pure \(|0\rangle\) and \(|1\rangle\) states live, respectively.

The location of the circle determines the probability of a particular measurement outcome. If the circle is at the north pole, then the probability of measuring a 0 is 1. If it’s at the south pole, then the probability of measuring a 1 is 1. At the equator, there’s a 50-50 chance of a 0 or a 1. All points on the circle at any given latitude represent states with the same measurement probabilities. Each latitude circle denotes what is called a magnitude.

Now let’s stop in the middle latitude. We can also rotate around the sphere (think of this as travelling along different longitudes):

These circles represent different relative phases of the state. Phases cannot be directly detected by measurement using the classical computational basis; however, there are methods to see what the phase is and phases are important in quantum algorithms.

Here’s a still of the sphere:

The angle \(\theta\) indexes the longitudes (moving north or south) and \(\phi\) indexes the longitudes (sweeping east or west).

The state of a qubit can be written in terms of these two parameters as follows:

\(\displaystyle \cos\frac{\theta}{2} |0\rangle + e^{i \phi} \sin\frac{\theta}{2} |1\rangle\).

Let’s fix \(\phi = 0\), so \(e^{i \phi} = 1\) and the equation above simplifies to:

\(\displaystyle \cos\frac{\theta}{2} |0\rangle + \sin\frac{\theta}{2} |1\rangle\).

The full sweep from north pole to south pole is \(180^{\circ}\) or \(\pi\) radians. Let’s try north pole (\(\theta = 0\)), equator (\(\theta = \frac{\pi}{2}\)), and south pole (\(\theta = \pi\)).

\(\theta\) \(\displaystyle \alpha = \cos\frac{\theta}{2}\) \(\displaystyle \beta = \sin\frac{\theta}{2}\) State
\(\displaystyle 0\) \(1\) \(0\) \(\displaystyle |0\rangle\)
\(\displaystyle \frac{\pi}{2}\) \(\displaystyle \sqrt{\frac{1}{2}}\) \(\displaystyle \sqrt{\frac{1}{2}}\) \(\displaystyle \frac{|0\rangle + |1\rangle}{\sqrt{2}}\)
\(\displaystyle \pi\) \(0\) \(1\) \(\displaystyle |1\rangle\)

Now what effect does the phase have? Fix \(\theta = \frac{\pi}{2}\), so the measurement probabilities are constant. A \(360^{\circ}\) turn is equal to \(2\pi\) radians. We shall try \(\phi = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\). This time I’m using Grokking the Bloch Sphere to visualise.

Bloch sphere \(\phi\) \(\displaystyle \alpha = \cos\frac{\theta}{2}\) \(\displaystyle \beta = e^{i \phi} \sin\frac{\theta}{2}\)
\(\displaystyle 0\) \(\displaystyle \frac{1}{\sqrt{2}}\) \(\displaystyle \frac{1}{\sqrt{2}}\)
 \(\displaystyle \frac{\pi}{2}\) \(\displaystyle \frac{1}{\sqrt{2}}\) \(\displaystyle \frac{i}{\sqrt{2}}\)
 \(\displaystyle \pi\) \(\displaystyle \frac{1}{\sqrt{2}}\) \(\displaystyle -\frac{1}{\sqrt{2}}\)
 \(\displaystyle \frac{3\pi}{2}\) \(\displaystyle \frac{1}{\sqrt{2}}\) \(\displaystyle –\frac{i}{\sqrt{2}}\)

Note how the \(\beta\) amplitudes come in pairs, one positive, one negative. The sign flips when spinning half a circle.

Simple examples of bras and kets

Animated interpretation of the Matrix’s digital rain, by Jahobr

Quantum computing involves lots of matrix multiplication. After seeing definitions, sometimes you just need a few simple examples.

Here’s a matrix:

\(\begin{pmatrix}
3 & 1 & 4\\
1 & 5 & 9\\
2 & 6 & 5
\end{pmatrix}\)

We can pull out the second row by multiplying as follows:

\(\begin{pmatrix}
0 & 1 & 0
\end{pmatrix}\begin{pmatrix}
3 & 1 & 4\\
1 & 5 & 9\\
2 & 6 & 5
\end{pmatrix} = \begin{pmatrix}
1 & 5 & 9
\end{pmatrix}\)

And the third row:

\(\begin{pmatrix}
0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
3 & 1 & 4\\
1 & 5 & 9\\
2 & 6 & 5
\end{pmatrix} = \begin{pmatrix}
2 & 6 & 5
\end{pmatrix}\)

Or the second column:

\(\begin{pmatrix}
3 & 1 & 4\\
1 & 5 & 9\\
2 & 6 & 5
\end{pmatrix} \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix} = \begin{pmatrix}
1 \\
5 \\
6
\end{pmatrix}\)

Here’s the middle element:

\(\begin{pmatrix}
0 & 1 & 0
\end{pmatrix}\begin{pmatrix}
3 & 1 & 4\\
1 & 5 & 9\\
2 & 6 & 5
\end{pmatrix} \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix} = 5\)

And the top-left element:

\(\begin{pmatrix}
1 & 0 & 0
\end{pmatrix}\begin{pmatrix}
3 & 1 & 4\\
1 & 5 & 9\\
2 & 6 & 5
\end{pmatrix} \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} = 3\)

Bra-kets

Again, this time using Dirac notation.

Let \(M= \begin{pmatrix}
3 & 1 & 4\\
1 & 5 & 9\\
2 & 6 & 5
\end{pmatrix}\)

And define the following kets:

\(|e_o\rangle = \begin{pmatrix}
1\\
0\\
0
\end{pmatrix}\)

\(|e_1\rangle = \begin{pmatrix}
0\\
1\\
0
\end{pmatrix}\)

\(|e_2\rangle = \begin{pmatrix}
0\\
0\\
1
\end{pmatrix}\)

This means we get the following bras (yes, they are really called that):

\(\langle e_o | = \begin{pmatrix}
1 &
0 &
0
\end{pmatrix}\)

\(\langle e_1 | = \begin{pmatrix}
0 &
1 &
0
\end{pmatrix}\)

\(\langle e_2 | = \begin{pmatrix}
0 &
0 &
1
\end{pmatrix}\)

We can pull out the second row of \(M\) like so:

\(\langle e_1 | M = \begin{pmatrix}1 & 5 & 9\end{pmatrix}\)

And the third row:

\(\langle e_2 | M = \begin{pmatrix}2 & 6 & 5\end{pmatrix}\)

Or the second column:

\(M |e_1\rangle = \begin{pmatrix}
1 \\
5 \\
6
\end{pmatrix}\)

Here’s the middle element:

\(\langle e_1 | M | e_1 \rangle = 5\)

And the top-left:

\(\langle e_0 | M | e_0 \rangle = 3\)

To get the \(6\), do:

\(\langle e_2 | M | e_1 \rangle = 6\)